Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents

نویسندگان

  • Lee A. Fielding
  • Jacob A. Lane
  • Matthew J. Derry
  • Oleksandr O. Mykhaylyk
  • Steven P. Armes
چکیده

Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition-fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produce a range of PLMA-PBzMA diblock copolymer nano-objects, including spheres, worms, and vesicles. In the present study, particular attention is paid to the worm phase, which forms soft free-standing gels at 20 °C due to multiple inter-worm contacts. Such worm gels exhibit thermo-responsive behavior: heating above 50 °C causes degelation due to the onset of a worm-to-sphere transition. Degelation occurs because isotropic spheres interact with each other much less efficiently than the highly anisotropic worms. This worm-to-sphere thermal transition is essentially irreversible on heating a dilute solution (0.10% w/w) but is more or less reversible on heating a more concentrated dispersion (20% w/w). The relatively low volatility of n-dodecane facilitates variable-temperature rheological studies, which are consistent with eventual reconstitution of the worm phase on cooling to 20 °C. Variable-temperature (1)H NMR studies conducted in d26-dodecane confirm partial solvation of the PBzMA block at elevated temperature: surface plasticization of the worm cores is invoked to account for the observed change in morphology, because this is sufficient to increase the copolymer curvature and hence induce a worm-to-sphere transition. Small-angle X-ray scattering and TEM are used to investigate the structural changes that occur during the worm-to-sphere-to-worm thermal cycle; experiments conducted at 1.0 and 5.0% w/w demonstrate the concentration-dependent (ir)reversibility of these morphological transitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pH-Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-Groups Induces an Order–Order Morphological Transition**

A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm-like diblock copolymers using two non-ionic monomers, glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end-group on the PGMA stabilizer block induces a worm-to-sphere transition, which in turn causes immediate degelatio...

متن کامل

Aqueous worm gels can be reconstituted from freeze-dried diblock copolymer powder.

Worm-like diblock copolymer nanoparticles comprising poly(glycerol monomethacrylate) (PGMA) as a stabilizer block and poly(2-hydroxypropyl methacrylate) (PHPMA) as a core-forming block were readily synthesized at 10% w/w solids via aqueous dispersion polymerization at 70 °C using Reversible Addition-Fragmentation chain Transfer (RAFT) chemistry. On cooling to 20 °C, soft transparent free-standi...

متن کامل

Thermo-Induced Self-Assembly of Responsive Poly(DMAEMA-<italic>b</italic>-DEGMA) Block Copolymers into Multi- and Unilamellar Vesicles

A series of thermoresponsive diblock copolymers of poly[2-(dimethylamino)ethyl methacrylate-block-di(ethyleneglycol) methyl ether methacrylate], poly(DMAEMA-b-DEGMA), were synthesized by reversible addition−fragmentation chain transfer (RAFT) polymerizations. The series consist of diblock and quasi diblock copolymers. Sequential monomer addition was used for the quasi diblock copolymer synthesi...

متن کامل

Stimulus-responsive block copolymer nano-objects and hydrogels via dynamic covalent chemistry.

Herein we demonstrate that dynamic covalent chemistry can be used to induce reversible morphological transitions in block copolymer nano-objects and hydrogels. Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer nano-objects (vesicles or worms) were prepared via polymerization-induced self-assembly. Addition of 4-carboxyphenylboronic acid (CPBA) lea...

متن کامل

Reversible pH- and solvent-responsive micelle-mediated self-assembly of platinum(II) terpyridyl-based metallo-supramolecular diblock copolymers.

An amphiphilic platinum(II)-containing diblock copolymer, with pH- and solvent-responsive micellization properties that could induce drastic UV-vis and emission spectral changes via modulation of Pt...Pt and pi-pi stacking interactions, has been demonstrated in both aqueous and organic media.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014